

Spectral Analysis of the 3 Brightest Short GRBs Observed with GBM

by

Sylvain Guiriec

National Space Science and Technology Center
University of Alabama in Huntsville
NASA Marshall Space Flight Center

On behalf of the Fermi/GBM Collaboration

See also poster P3-233 by Erin Kara (Wed-Thurs)

(Guiriec et al. In preparation)

2nd Fermi Symposium – Washington DC - Tuesday, November 3rd, 2009

Why is GBM unique for short and hard GRBs?

- GBM has an effective area 1/36 of its famous predecessor BATSE
- => GBM required bright events

BUT

12 Iodine Sodium with higher z. detectors (Nal: => Much bette 8 keV to 1 MeV)

- Even if smaller, GBM/BGO detectors are much thicker with higher z.
- => Much better photo-peak efficiency and effective area above 1 MeV :

BATSE maximal energy ~10 MeV.

GBM maximal energy ~40 MeV.

- => Spectroscopy of hard bursts possible with GBM.
- GBM has:
 - ✓ much more available on-board memory.
 - ✓ a much higher telemetry downlink budget.
 - ✓ a better data design for Time Tag Events (TTE).
- => Data available with a time resolution down to $2 \mu s$, 128 spectral channels from 8 keV to 40 MeV and from -30 to 300 s.
- => Ideal for the study of short events like short GRBs,
 TGFs (see Michael Briggs talk and Jerry Fishman poster
 on TGFs) and SGRs (see Chryssa Koveliotou and Ersin
 Gogus talks)
 2/10

2 Germanate Bismuth detectors (BGO: 200 keV to 40 MeV)

GBM and short GRBs

- About 68 short GRBs detected with GBM since since July, 2008.
- Short GRBs correspond to ~20% of the total GRBs detected with GBM

Sample criteria for this analysis

- $T_{50} < 1s$
- Fluence > 2e⁻⁶ erg/cm2 => bright enough for time-resolved spectroscopy with GBM
 - => This selection results in 3 brightest and hardest short GRBs detected with GBM so far:
 - GRB 090227B
 - GRB 090228
 - GRB 090510

In all the following, spectral analysis performed from 8 keV to 40 MeV.

Time-integrated spectra of the 3 GRBs

Various model tested :

Standard model before the Fermi Era

- ✓ Power-law with exponential decay (comptonized)
- ✓ Band function
- ✓ Comptonized+PL
- ✓ Band+PL

Additional component often present in Fermi's GRB spectra

Fit performed with the analysis package Rmfit

 Choice of the best model: statistical improvement of the Castor Cstat value between models according to the additional degree of freedom

Time-integrated spectra of the 3 GRBs Case of GRB 090227B

Band (Cstat: 699/607 dof) Comptonized + PL (Cstat: 689/606 dof)

Count spectrum

υF_{.,} spectrum

The additional component dominates the standard Band function at both low and high Energy 5/10

Name	Model	Parameters of the Band function			PL	Castor
		E _{peak} (keV)	α	β	index	Cstat / dof
GRB 090227B	Compt	$2227^{\tiny{+90}}_{\tiny{-85}}$	$-0.52^{\tiny{+0.02}}_{\tiny{-0.02}}$			706/608
	Band	2116^{+97}_{-95}	$-0.50^{+0.02}_{-0.02}$	$-3.35^{+0.27}_{-0.39}$		699/607
	Compt+PL	1995^{+96}_{-91}	-0.36 ^{+0.05}		$-1.37^{+0.06}_{-0.06}$	689/606
	Band+PL	$1947^{\tiny{+205}}_{\tiny{-98}}$	$-0.36^{+0.05}_{-0.13}$	$-3.44_{-0.80}^{+0.58}$	$-1.51^{+0.05}_{-0.04}$	686/605
GRB 090228	Compt	$862^{\scriptscriptstyle +52}_{\scriptscriptstyle -47}$	$-0.59^{+0.03}_{-0.03}$			813/729
	Band	$860^{\scriptscriptstyle +50}_{\scriptscriptstyle -49}$	$-0.59^{+0.03}_{-0.03}$	$-3.77^{+0.64}_{-0.64}$		813/728
	Compt+PL	722^{+47}_{-42}	$-0.23^{+0.11}_{-0.10}$		-1.63 ^{+0.09} _{-0.15}	795/727
	Band+PL	723^{+45}_{-41}	$-0.24^{+0.10}_{-0.10}$	-4.74 ^{+1.14}	$-1.64^{+0.03}_{-0.02}$	795/726
GRB 090510	Compt	$4797^{\tiny{+255}}_{\tiny{-237}}$	$-0.77^{\tiny{+0.02}}_{\tiny{-0.02}}$			922/851
	Band	4383_{-278}^{+290}	$-0.75^{\tiny{+0.02}}_{\tiny{-0.02}}$	$-2.80^{\tiny{+0.20}}_{\tiny{-0.28}}$		911/850
	Compt+PL	3731^{+265}_{-246}	$-0.51^{+0.08}_{-0.07}$		$-1.35^{+0.04}_{-0.04}$	897/849
	Band+PL	$3695^{\tiny{+284}}_{\tiny{-265}}$	$-0.51^{+0.08}_{-0.08}$	-3.65 ^{+0.75}	$-1.38^{+0.04}_{-0.03}$	897/848
(GBM+LAT)	Band+PL	3936^{+280}_{-260}	$-0.58^{+0.06}_{-0.05}$	$-2.83^{+0.14}_{-0.20}$	$-1.62^{+0.03}_{-0.03}$	

- <u>Comp + PL is systematically prefered</u> => Existence of an <u>additional component</u> in these 3 GRBs
- Value of the index of the additional PL similar in all these bursts
- Higher E_{peak} values than for long GRBs (=> question during Ehud talk : short vs long GRBs with GBM)
- Steep β values (which confirm the comment from Guido to Nicola in the previous talk)

Time-integrated spectra of the 3 GRBs

The existence of additional components in these 3 GRBs is

consistent with LAT data

See Poster Valerie Connaughton P3-171 (Wed-Thur)

Fine Time-Resolved Spectroscopy

- Similar to what we observed in long GRBs but contracted in time and shifted to higher energy (Ford et al.).
- E_{peak} tracks the light curves like for the long burst.
- The hardest part is not always at the beginning.
- The most intense peaks are not always the hardest.

Conclusion

Time-integrated spectra

- Time-integrated spectra are best fit with <u>Band+Power law</u> model
 - => Additional component : electron SSC or hadronic emission
- The additional power law dominates the standard Band spectrum at low and high energy

 => low energy extension of the PL challenges all the models
- The hardest short GRBs have Epeak values well above those of the hardest long GRBs.

Fine time-resolved spectroscopy

- Short GRBs have similar light curves than long GRBs but contracted in time and shifted towards higher energy, and appear to have steeper β.
- E_{peak} tracks the light curves and spreads over a broad energy range
 => consistent with the electron synchrotron models in the internal shocks context (Acceleration and cooling of the electrons leading to a hardening with the peak rise then a softening of the burst during the pulse decay)
- α in the time resolved spectroscopy violates the synchrotron limits (Frederic Daigne talk: possible answer with IC ?)

Poster P3-233 by <u>Erin Kara</u> (Wed-Thurs) Poster P3-171 by <u>Valerie Connaughton</u> (Wed-Thurs)

BAGGIO

Time-integrated spectra of the 3 GRBs Case of GRB 090227B

Band (Cstat: 699/607 dof) Comptonized + PL (Cstat: 689/606 dof)

Count spectrum

υF_{.,} spectrum

The additional component dominates the standard Band function at both low and high Energy 12/10

Time-integrated spectra of the 3 GRBs Case of GRB 090228

Band (Cstat: 813/728 dof) Comptonized + PL (Cstat: 795/727 dof)

Count spectrum

υF_{.,} spectrum

The additional component dominates the standard Band function at both low and high Energy 13/10

Time-integrated spectra of the 3 GRBs Case of GRB 090510

Band (Cstat: 911/850 dof) Comptonized + PL (Cstat: 897/849 dof)

Count spectrum

υF_{.,} spectrum

The additional component dominates the standard Band function at both low and high Energy 14/10